Mvin mediates Francisella Tularensis virulence through evasion of AIM2 inflammasome activation
نویسندگان
چکیده
ACKNOWLEDGEMENTS I would like to thank my advisors, Drs. William Nauseef and Fayyaz Sutterwala for their support and patience. I would also like to thank my thesis committee for their input. Additionally, I would like to thank everyone in the Inflammation Program. Finally, I would like to thank my family for their endless support. I am especially grateful to my wife Julie for supporting me and accepting my eccentricities. ABSTRACT The mechanisms by which the facultative intracellular pathogen Francisella tularensis is recognized by the innate immune system and the strategies that F. tularensis uses to avoid this recognition are not well understood. We have identified the basic components of the inflammasome that assemble in response to F. tularensis Live Vaccine Strain (LVS) challenge as containing the cysteine protease caspase-1, the adaptor protein ASC and the PYHIN molecule AIM2. We have also shown here that the nucleotide-binding domain leucine-rich repeat containing receptors (NLRs), NLRC4, NLRP3, NLRP6, NLRP10, and NLRP12 were not necessary for activation of caspase-1 and subsequent IL-1β secretion in response to challenge with F. tularensis LVS in vitro. In vivo, NLRC4, NLRP3, NLRP6, NLRP10, and NLRP12 did not appear to enhance survival. However, caspase-1-and ASC-deficient mice succumbed more rapidly to infection, indicating that the inflammasome played a role in defense against F. tularensis LVS. Additionally, we identified a gene with homology to Escherichia coli mviN, a putative lipid II flippase, that functions as a F. tularensis virulence factor. In vivo infection of mice with a F. tularensis LVS mviN transposon mutant (mviN::Tn5) resulted in improved host survival and decreased bacterial burdens compared to infection with wild-type F. tularensis LVS. Wild-type F. tularensis LVS and the mviN::Tn5 mutant replicated at a similar rate in both macrophages and liquid broth culture. Additionally, the ability to induce the production of TNF-α or IL-6 was also similar between WT F. tularensis and the mviN::Tn5 mutant. In contrast to the similar levels of iv production of IL-6 and TNF-α, the mviN mutant induced increased AIM2 inflammasome-dependent IL-1β secretion and cytotoxicity in macrophages compared to wild-type F. tularensis. The compromised in vivo virulence associated with the mutation of mviN was dependent upon inflammasome activation, as caspase-1-and ASC-deficient mice did not exhibit preferential survival following infection. These data show that F. tularensis LVS activation of the inflammasome is caspase-1-, ASC-, and AIM2-dependent. These data also identify mviN as a novel F. tularensis virulence factor that enables …
منابع مشابه
Mitochondrial ROS potentiates indirect activation of the AIM2 inflammasome
Activation of the inflammasome is important for the detection and clearance of cytosolic pathogens. In contrast to avirulent Francisella novicida (Fn), infection with virulent Francisella tularensis ssp tularensis does not trigger activation of the host AIM2 inflammasome. Here we show that differential activation of AIM2 following Francisella infection is due to sensitivity of each isolate to r...
متن کاملCutting edge: mutation of Francisella tularensis mviN leads to increased macrophage absent in melanoma 2 inflammasome activation and a loss of virulence.
The mechanisms by which the intracellular pathogen Francisella tularensis evades innate immunity are not well defined. We have identified a gene with homology to Escherichia coli mviN, a putative lipid II flippase, which F. tularensis uses to evade activation of innate immune pathways. Infection of mice with a F. tularensis mviN mutant resulted in improved survival and decreased bacterial burde...
متن کاملMycobacterium tuberculosis and the host cell inflammasome: a complex relationship
The production of IL-1β during the infection with Mycobacterium tuberculosis (Mtb) is important for successful host immune defense. In macrophages and dendritic cells the host cell inflammasome is crucial for generation of secreted IL-1β in response to Mtb infections. In these cell types Mtb infection only activates the NLRP3-inflammasome. New reports demonstrate that nitric oxide has an import...
متن کاملCaspase-1 activity affects AIM2 speck formation/stability through a negative feedback loop
The inflammasome is an innate immune signaling platform leading to caspase-1 activation, maturation of pro-inflammatory cytokines and cell death. Recognition of DNA within the host cytosol induces the formation of a large complex composed of the AIM2 receptor, the ASC adaptor and the caspase-1 effector. Francisella tularensis, the agent of tularemia, replicates within the host cytosol. The macr...
متن کاملAbsent in melanoma 2 is required for innate immune recognition of Francisella tularensis.
Macrophages respond to cytosolic nucleic acids by activating cysteine protease caspase-1 within a complex called the inflammasome. Subsequent cleavage and secretion of proinflammatory cytokines IL-1beta and IL-18 are critical for innate immunity. Here, we show that macrophages from mice lacking absent in melanoma 2 (AIM2) cannot sense cytosolic double-stranded DNA and fail to trigger inflammaso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016